Undo

Continuous Integration with Live Recorder

By Charlie MacLaclan

One of the many ways in which Live Recorder can significantly improve
the testing process is in its handling of continuous integration failures.

Continuous Integration (Cl) is a development practice that requires developers to integrate
code into a shared repository several times a day. Each check-in is then verified by an
automated build, allowing teams to detect problems early.

Currently, a developer is usually informed about a continuous integration failure via an
automated report, which is little more than a flag that a particular test has failed after a
certain commit was made. Backtracking from this terse statement of failure to the source of
the problem is often laborious, time consuming and painful for the developer, and that is the
case for failures that are reproducible. Irreproducible failures or intermittently failing tests add
a whole extra dimension of complexity to the investigation. They sometimes appear in 1 in
every 300 runs of the program, and can be so difficult to find that it is easier (and more cost
effective) to ignore them and hope that they do not appear again. Consequently, some
testing systems can accumulate a backlog of "known-failing" tests, being a dump of
(possibly important) test failures that no-one has the time, inclination or energy to fix.

By using Live Recorder to fully record any failing process, a vitally useful cache of
information is immediately made available to the developer. This unique technology enables
quick and easy resolution of test failures, including both reproducible and intermittent errors,
and will significantly reduce the effort taken to find the root cause of a bug.

To demonstrate how Live Recorder can fix a continuous integration failure, we will illustrate
how finding a bug in the command line processing of cpython could have been made

significantly easier if Live Recorder had been used.

The bug is question is fixed in commit '0e8bd4785ea0” from the cpython mercurial
repository. It can be observed by executing the following sequence of commands:

© Undo Software 2016

hg clone https://hg.python.org/cpython
cd cpython

hg checkout 75138:bc66484b0d73
configure --with-pydebug && make -3j5
./python -m test test cmd line

This checks out the parent commit of ‘0e8bd4785eal’, configures and builds python (with
debugging symbols enabled) and runs the test that fails. As it stands, the amount of
information that is provided by the failure is minimal:

[1/1] test cmd line

[37290 refs]

[37289 refs]

test test cmd line failed -- Traceback (most recent call last):

File
"/home/cmclachlan/software/cpython/Lib/test/test cmd line.py", line
66, in test xoptions

'-Xa', '-Xb=c,d=e', '-c¢', 'import sys;
print (sys. xoptions) ')

File
"/home/cmclachlan/software/cpython/Lib/test/script helper.py", line
53, in assert python ok

return assert python (True, *args, **env vars)

File
"/home/cmclachlan/software/cpython/Lib/test/script helper.py", line
45, in assert python

"stderr follows:\n%s" % (rc, err.decode('ascii',
'ignore')))
AssertionError: Process return code is -6, stderr follows:
python: Objects/unicodeobject.c:7676: unicode hash: Assertion
' Py HashSecret Initialized' failed.

1 test failed:

test cmd line
[96560 refs]

We are given a clue that an assertion has failed, but we don't really know why.

Here’s where Live Recorder can help. By adding a few lines to the cpython testing system,
any failed tests will be re-run using Live Recorder, which will record the program’s execution

thus capturing the error as it happens. In the case of the cypthon test system, a suitable
patch is:

diff -r bc66484b0d73 Lib/test/script helper.py
-—-- a/Lib/test/script helper.py Tue Feb 21 18:06:22 2012 +0100
+++ b/Lib/test/script helper.py Wed Feb 24 16:23:15 2016 +0000
@@ -40,9 +40,24 Q@@
rc = p.returncode
err = strip python stderr (err)
if (rc and expected success) or (not rc and not
expected success) :
+ rfile = '/tmp/bad python.undo'
+ record cmd line =
['/home/releases/undodb-4.3.1980/undolr/undo-record x64"',

'-—terminate-filename', rfile]

+ for i in cmd line:

+ record cmd line.append (i)

+

+ P = subprocess.Popen(record cmd line,
stdin=subprocess.PIPE,

+ stdout=subprocess.PIPE,
stderr=subprocess.PIPE,

+ env=env)

try:

i out, err = p.communicate ()

1 finally:

4 subprocess. cleanup ()

+ p.stdout.close ()

4 p.stderr.close ()

+

raise AssertionError (
- "Process return code is %d, "

Q

= "stderr follows:\n%s" % (rc, err.decode('ascii',

'ignore')))

+ "Process return code is %d, recording written to
s "

A "stderr follows:\n%s" % (rc, rfile,

err.decode ('ascii', 'ignore')))

return rc, out, err

def assert python ok(*args, **env vars):

By adding these lines to the cypthon test runner, a full recording of each test failure is sent to
the file '/tmp/bad_python.undo” which can then be loaded into the UndoDB debugger. The
developer can now step backwards, as well as forwards in the code to find the root cause of
the bug.

Upon loading the recording file, the first thing we want to do is run it forward until we get to
the crash:

undodb-gdb: Have loaded Undo Recording:

undodb-gdb: /tmp/bad python.undo

undodb-gdb: Note that the debuggee is currently at the
beginning of

undodb-gdb: the recording. You can use the "continue" command
to

undodb-gdb: run to the end of the recording.

(undodb-gdb) c

Continuing.

warning: Could not load shared library symbols for
linux-vdso.so.1l.

Do you need "set solib-search-path" or "set sysroot"?

Program received signal SIGABRT, Aborted.

0x00007£34£72b5a57 in GI raise (sig=siglentry=6) at
../sysdeps/unix/sysv/linux/raise.c:55

55 ../sysdeps/unix/sysv/linux/raise.c: No such file or
directory.

undodb-gdb: Have switched to record mode.

undodb-gdb: End of recording reached.

undodb-gdb: (You may use undodb commands to go backwards.)

At this point we are at the end of recorded history at the time when the assertion went off.
We can see this from the back-trace:

(undodb-gdb) bt
#0 0x00007£34£72b5a57 in _ GI raise (sig=sig@entry=6) at
../sysdeps/unix/sysv/linux/raise.c:55
#1 0x00007f34f72b6dea in _ GI abort () at abort.c:89
#2 0x00007f34f72ae8ad in _ assert fail base (
fmt=0x7£34f73e8478 "%$s%s%s:%u: %s¥sAssertion " %s'

failed.\n%n",

assertion=assertion@entry=0x5caa38
" Py HashSecret Initialized",
file=file@Rentry=0x5c8820 "Objects/unicodeobject.c",
line=linef@entry=7676,
function=function@entry=0x5cc5e4
< PRETTY FUNCTION .11396> "unicode hash") at assert.c:92
#3 0x00007f£34f72ae962 in GI _ assert fail
(assertion=0x5caa38 " Py HashSecret Initialized",
file=0x5c8820 "Objects/unicodeobject.c", line=7676,
function=0x5cc5e4 < PRETTY FUNCTION .11396>
"unicode hash") at assert.c:101
#4 0x000000000045a785 in unicode hash (self=0x7f34£f811a0a8) at
Objects/unicodeobject.c:7676
#5 0x0000000000417d16 in PyObject Hash (v=0x7£34f811a0a8) at
Objects/object.c:764
#6 0x000000000058dcdf in PyDict SetItem (op=0x0,
key=0x7f34f811a0a8, value=0x85eael < Py TrueStruct>)
at Objects/dictobject.c:802
#7 0x00000000004cS%aaa in PySys AddXOption (s=0x7£34£8117078
L"a") at ./Python/sysmodule.c:1198
#8 0x00000000004dSdac in Py Main (argc=6, argv=0x7£34£8115040)
at Modules/main.c:435
#9 0x0000000000416459 in main (argc=6, argv=0x7fff97bd18f8) at
./Modules/python.c:63

At this stage, we do not have enough information on the stack to establish what has gone
wrong. We therefore need to reverse-finish functions until we get out of libc's assertion
handling code and back into the python code:

(undodb-gdb) bfinish

89 in abort.c

(undodb-gdb) bfinish

92 in assert.c

(undodb-gdb) bfinish

101 in assert.c

(undodb-gdb) bfinish

7676 assert (Py HashSecret Initialized);

Here we can see that the assertion has fired because (unexpectedly)
"_Py_HashSecret_Initialized' is evaluating as ‘false’. We need to find out why this is.

Using UndoDB’s reversible functionality, we can put a watchpoint on it:

(undodb-gdb) watch Py HashSecret Initialized
Hardware watchpoint 1: Py HashSecret Initialized

and reverse continue to find out when the variable changed.

(undodb-gdb) bcont

Program received signal SIGTRAP, Trace/breakpoint trap.

0x00007£34£7£3dc83 in start () from
remote:/11b64/1d-1inux-x86-64.s0.2

undodb-gdb: Have reached start of recorded history.

(undodb-gdb)

So we have arrived back at the beginning of recorded history and have established why
"_Py_HashSecret_Initialized' is zero. This is because the value was never changed and hence
remained zero, as this was the original value. The problem is not that
"_Py_HashSecret_lInitialized' is being corrupted in some way, but that the initialisation had
never been performed. This very quickly leads to the solution to the problem displayed in
commit '0e8bd4785ea0’. We need to call '_PyRandom_Init()’ before most command line
parsing (but after parsing options related to setting random number seeds).

So in conclusion, this example has shown how Live Recorder can be used to track down
continuous integration failures that are otherwise difficult to source. By recording a
program’s execution, developers have all the information they need to find out why a
particular commit caused a test to fail. Scale this example to the real world where hundreds
of developers are committing multiple lines of code to the repository every day, one can see
why Live Recorder will help to significantly improve the continuous integration process and
help to reduce the headaches all developers experience when bugs appear in our software.

© Undo Software 2016

